Цветная теорема Тверберга, обобщения и новые результаты

Мы доказываем кратную цветную теорему Тверберга и сбалансированную цветную теорему Тверберга, пользуясь различными методами и приемами. Доказательство первой теоремы использует в качестве конфигурационнго пространства шахматный комплекс с кратностями и теорию Эйленберга-Красносельского о степенях эк...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestii͡a︡ Akademii nauk. Serii͡a︡ matematicheskai͡a 2022, Vol.86 (2), p.62-79
Hauptverfasser: Jojic, Dusko, Panina, Gaiane Yur'evna, Zivaljević, Rade
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Мы доказываем кратную цветную теорему Тверберга и сбалансированную цветную теорему Тверберга, пользуясь различными методами и приемами. Доказательство первой теоремы использует в качестве конфигурационнго пространства шахматный комплекс с кратностями и теорию Эйленберга-Красносельского о степенях эквивариантных отображений для несвободных действий групп. Доказательство второй теоремы опирается на высокую связность конфигурационного пространства, установленную с помощью дискретной теории Морса. Библиография: 35 наименований. We prove a multiple coloured Tverberg theorem and a balanced coloured Tverberg theorem, applying different methods, tools and ideas. The proof of the first theorem uses a multiple chessboard complex (as configuration space) and the Eilenberg-Krasnoselskii theory of degrees of equivariant maps for non-free group actions. The proof of the second result relies on the high connectivity of the configuration space, established by using discrete Morse theory.
ISSN:1607-0046
2587-5906
DOI:10.4213/im9024