HERMITE WENO SCHEMES WITH STRONG STABILITY PRESERVING MULTI-STEP TEMPORAL DISCRETIZATION METHODS FOR CONSERVATION LAWS

Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2017, Vol.35 (1), p.52-73
Hauptverfasser: Cai, Xiaofeng, Zhu, Jun, Qiu, Jianxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step tem- poral discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step diseretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1609-m2014-0069