ON THE DISCRETE MAXIMUM PRINCIPLE FOR THE LOCAL PROJECTION SCHEME WITH SHOCK CAPTURING

It is a well known fact that finite element solutions of convection dominated problems can exhibit spurious oscillations in the vicinity of boundary layers. One way to overcome this numerical instability is to use schemes that satisfy the discrete maximum principle. There are monotone methods for pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2017-09, Vol.35 (5), p.547-568
Hauptverfasser: Skrzypacz, Piotr, Wei, Dongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a well known fact that finite element solutions of convection dominated problems can exhibit spurious oscillations in the vicinity of boundary layers. One way to overcome this numerical instability is to use schemes that satisfy the discrete maximum principle. There are monotone methods for piecewise linear elements on simplices based on the up- wind techniques or artificial diffusion. In order to satisfy the discrete maximum principle for the local projection scheme, we add an edge oriented shock capturing term to the bilinear form. The analysis of the proposed stabilisation method is complemented with numerical examples in 2D.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1605-m2015-0479