OPTIMAL SOLVER FOR MORLEY ELEMENT DISCRETIZATION OF BIHARMONIC EQUATION ON SHAPE-REGULAR GRIDS

This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2016-03, Vol.34 (2), p.159-173
Hauptverfasser: Feng, Chunsheng, Zhang, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1510-m2014-0085