A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR SOBOLEV EQUATION

For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2015-05, Vol.33 (3), p.307-322
Hauptverfasser: Gao, Fuzheng, Wang, Xiaoshen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1502-m4509