A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS

In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2015-03, Vol.33 (2), p.113-127
Hauptverfasser: Fu, Hongfei, Rui, Hongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 113
container_title Journal of computational mathematics
container_volume 33
creator Fu, Hongfei
Rui, Hongxing
description In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.
doi_str_mv 10.4208/jcm.1406-m4396
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1406_m4396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665069098</cqvip_id><jstor_id>43693847</jstor_id><sourcerecordid>43693847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1c49ebb5006ed32a88a38c4f8eb083665494a5a99d735866317a8a5f51d5df623</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw5WwhcUyx40fsYwgOWErjkLhSb1GaR2lFKSS98O9xaIU4rXZ3Znb1AXCL0Yz6SDxs690MU8S9HSWSn4EJlhJ7ASbyHEyQz6gnKZKX4GoYtggh4tNgAvoQZrk2uYYqz00OVWH1PLSqgLHrEhUW1iteF2HuJnO9VE8w1qm2CqpEzVVqYZhluVmOHm1SaGK3SHRmdQRNNkYlMDKpzU3i7phHZyquwUVXvQ_tzalOwSJWNnrxEvOsozDxal_yg4drKtvViiHE24b4lRAVETXtRLtCgnDOqKQVq6RsAsIE5wQHlahYx3DDmo77ZApmx9y63w9D33blZ7_ZVf13iVE5EisdsXIkVv4Sc4b7o2E7HPb9f7VPUFBSwiURNHC6u1Pw2_5j_bX5WP9p3VuISyQF-QG8H2zl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Fu, Hongfei ; Rui, Hongxing</creator><creatorcontrib>Fu, Hongfei ; Rui, Hongxing</creatorcontrib><description>In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><identifier>DOI: 10.4208/jcm.1406-m4396</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>先验误差估计 ; 最优控制问题 ; 最小二乘 ; 有限元逼近 ; 椭圆型 ; 混合有限元方法 ; 状态变量 ; 预条件共轭梯度</subject><ispartof>Journal of computational mathematics, 2015-03, Vol.33 (2), p.113-127</ispartof><rights>Copyright 2015 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1c49ebb5006ed32a88a38c4f8eb083665494a5a99d735866317a8a5f51d5df623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Fu, Hongfei</creatorcontrib><creatorcontrib>Rui, Hongxing</creatorcontrib><title>A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.</description><subject>先验误差估计</subject><subject>最优控制问题</subject><subject>最小二乘</subject><subject>有限元逼近</subject><subject>椭圆型</subject><subject>混合有限元方法</subject><subject>状态变量</subject><subject>预条件共轭梯度</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EEqVw5WwhcUyx40fsYwgOWErjkLhSb1GaR2lFKSS98O9xaIU4rXZ3Znb1AXCL0Yz6SDxs690MU8S9HSWSn4EJlhJ7ASbyHEyQz6gnKZKX4GoYtggh4tNgAvoQZrk2uYYqz00OVWH1PLSqgLHrEhUW1iteF2HuJnO9VE8w1qm2CqpEzVVqYZhluVmOHm1SaGK3SHRmdQRNNkYlMDKpzU3i7phHZyquwUVXvQ_tzalOwSJWNnrxEvOsozDxal_yg4drKtvViiHE24b4lRAVETXtRLtCgnDOqKQVq6RsAsIE5wQHlahYx3DDmo77ZApmx9y63w9D33blZ7_ZVf13iVE5EisdsXIkVv4Sc4b7o2E7HPb9f7VPUFBSwiURNHC6u1Pw2_5j_bX5WP9p3VuISyQF-QG8H2zl</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Fu, Hongfei</creator><creator>Rui, Hongxing</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS</title><author>Fu, Hongfei ; Rui, Hongxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1c49ebb5006ed32a88a38c4f8eb083665494a5a99d735866317a8a5f51d5df623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>先验误差估计</topic><topic>最优控制问题</topic><topic>最小二乘</topic><topic>有限元逼近</topic><topic>椭圆型</topic><topic>混合有限元方法</topic><topic>状态变量</topic><topic>预条件共轭梯度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Hongfei</creatorcontrib><creatorcontrib>Rui, Hongxing</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Hongfei</au><au>Rui, Hongxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><spage>113</spage><epage>127</epage><pages>113-127</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1406-m4396</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2015-03, Vol.33 (2), p.113-127
issn 0254-9409
1991-7139
language eng
recordid cdi_crossref_primary_10_4208_jcm_1406_m4396
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects 先验误差估计
最优控制问题
最小二乘
有限元逼近
椭圆型
混合有限元方法
状态变量
预条件共轭梯度
title A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PRIORI%20ERROR%20ESTIMATES%20FOR%20LEAST-SQUARES%20MIXED%20FINITE%20ELEMENT%20APPROXIMATION%20OF%20ELLIPTIC%20OPTIMAL%20CONTROL%20PROBLEMS&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Fu,%20Hongfei&rft.date=2015-03-01&rft.volume=33&rft.issue=2&rft.spage=113&rft.epage=127&rft.pages=113-127&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1406-m4396&rft_dat=%3Cjstor_cross%3E43693847%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=665069098&rft_jstor_id=43693847&rfr_iscdi=true