A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS

In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2015-03, Vol.33 (2), p.113-127
Hauptverfasser: Fu, Hongfei, Rui, Hongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1406-m4396