OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT

We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2012-07, Vol.30 (4), p.392-403
Hauptverfasser: Hinze, Michael, Vierling, Morten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 4
container_start_page 392
container_title Journal of computational mathematics
container_volume 30
creator Hinze, Michael
Vierling, Morten
description We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.
doi_str_mv 10.4208/jcm.1111-m3678
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1111_m3678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43243190</cqvip_id><jstor_id>43693708</jstor_id><sourcerecordid>43693708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-57a43744d814e89efce9b8d5c7c6e37a809159dc6b0dd1f5ddc884919af17a9f3</originalsourceid><addsrcrecordid>eNpNkDFOwzAYhS0EEqWwsiGZA7jYsRPbowkOrZTEUerOUeokpRVtIenCVTgLd-IKJLRC_Msb_u-94QPgluAJ87B42LjthPSHtjTg4gyMiJQEcULlORhhz2dIMiwvwVXXbTDG1GN8BFYms7NExTA0qc1NDE0E7VTDWGWxCjV61LHNVTKDJtO5siaHJu3ZJFOhhfNFHvXQ_Pvrc-iHOrNQpU8wXSQ6n4X9qs21solO7TW4aMrXrr455RgsIm3DKYrN80AiRz1-QD4vGeWMVYKwWsi6cbVcisp33AU15aXAkviycsESVxVp_KpyQjBJZNkQXsqGjsHkuOvafde1dVO8tett2X4UBBeDpqLXVAyail9NfeHuWNh0h337RzMaSMrx8L8_Db7sd6v39W71j_EYJRLTHxYfaaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Hinze, Michael ; Vierling, Morten</creator><creatorcontrib>Hinze, Michael ; Vierling, Morten</creatorcontrib><description>We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><identifier>DOI: 10.4208/jcm.1111-m3678</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Adjoints ; Approximation ; Equations of state ; Estimation methods ; Finite element method ; Hypersurfaces ; Iterative solutions ; Mathematical surfaces ; Newtons method ; Optimal control ; 半光滑牛顿算法 ; 数值处理 ; 数值求解 ; 最优控制问题 ; 有限元素 ; 椭圆偏微分方程 ; 紧凑型 ; 超曲面</subject><ispartof>Journal of computational mathematics, 2012-07, Vol.30 (4), p.392-403</ispartof><rights>Copyright 2012 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-57a43744d814e89efce9b8d5c7c6e37a809159dc6b0dd1f5ddc884919af17a9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693708$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693708$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Vierling, Morten</creatorcontrib><title>OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.</description><subject>Adjoints</subject><subject>Approximation</subject><subject>Equations of state</subject><subject>Estimation methods</subject><subject>Finite element method</subject><subject>Hypersurfaces</subject><subject>Iterative solutions</subject><subject>Mathematical surfaces</subject><subject>Newtons method</subject><subject>Optimal control</subject><subject>半光滑牛顿算法</subject><subject>数值处理</subject><subject>数值求解</subject><subject>最优控制问题</subject><subject>有限元素</subject><subject>椭圆偏微分方程</subject><subject>紧凑型</subject><subject>超曲面</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkDFOwzAYhS0EEqWwsiGZA7jYsRPbowkOrZTEUerOUeokpRVtIenCVTgLd-IKJLRC_Msb_u-94QPgluAJ87B42LjthPSHtjTg4gyMiJQEcULlORhhz2dIMiwvwVXXbTDG1GN8BFYms7NExTA0qc1NDE0E7VTDWGWxCjV61LHNVTKDJtO5siaHJu3ZJFOhhfNFHvXQ_Pvrc-iHOrNQpU8wXSQ6n4X9qs21solO7TW4aMrXrr455RgsIm3DKYrN80AiRz1-QD4vGeWMVYKwWsi6cbVcisp33AU15aXAkviycsESVxVp_KpyQjBJZNkQXsqGjsHkuOvafde1dVO8tett2X4UBBeDpqLXVAyail9NfeHuWNh0h337RzMaSMrx8L8_Db7sd6v39W71j_EYJRLTHxYfaaE</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Hinze, Michael</creator><creator>Vierling, Morten</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT</title><author>Hinze, Michael ; Vierling, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-57a43744d814e89efce9b8d5c7c6e37a809159dc6b0dd1f5ddc884919af17a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adjoints</topic><topic>Approximation</topic><topic>Equations of state</topic><topic>Estimation methods</topic><topic>Finite element method</topic><topic>Hypersurfaces</topic><topic>Iterative solutions</topic><topic>Mathematical surfaces</topic><topic>Newtons method</topic><topic>Optimal control</topic><topic>半光滑牛顿算法</topic><topic>数值处理</topic><topic>数值求解</topic><topic>最优控制问题</topic><topic>有限元素</topic><topic>椭圆偏微分方程</topic><topic>紧凑型</topic><topic>超曲面</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Vierling, Morten</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinze, Michael</au><au>Vierling, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>30</volume><issue>4</issue><spage>392</spage><epage>403</epage><pages>392-403</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1111-m3678</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2012-07, Vol.30 (4), p.392-403
issn 0254-9409
1991-7139
language eng
recordid cdi_crossref_primary_10_4208_jcm_1111_m3678
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Adjoints
Approximation
Equations of state
Estimation methods
Finite element method
Hypersurfaces
Iterative solutions
Mathematical surfaces
Newtons method
Optimal control
半光滑牛顿算法
数值处理
数值求解
最优控制问题
有限元素
椭圆偏微分方程
紧凑型
超曲面
title OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20CONTROL%20OF%20THE%20LAPLACE-BELTRAMI%20OPERATOR%20ON%20COMPACT%20SURFACES%EF%BC%9A%20CONCEPT%20AND%20NUMERICAL%20TREATMENT&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Hinze,%20Michael&rft.date=2012-07-01&rft.volume=30&rft.issue=4&rft.spage=392&rft.epage=403&rft.pages=392-403&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1111-m3678&rft_dat=%3Cjstor_cross%3E43693708%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43243190&rft_jstor_id=43693708&rfr_iscdi=true