OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT
We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the a...
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2012-07, Vol.30 (4), p.392-403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings. |
---|---|
ISSN: | 0254-9409 1991-7139 |
DOI: | 10.4208/jcm.1111-m3678 |