OPTIMAL CONTROL OF THE LAPLACE-BELTRAMI OPERATOR ON COMPACT SURFACES: CONCEPT AND NUMERICAL TREATMENT

We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2012-07, Vol.30 (4), p.392-403
Hauptverfasser: Hinze, Michael, Vierling, Morten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider optimal control problems of elliptic PDEs on hypersurfaces F in R^n for n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of F. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1111-m3678