ERROR ESTIMATES OF THE FINITE ELEMENT METHOD WITH WEIGHTED BASIS FUNCTIONS FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION
In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in...
Gespeichert in:
Veröffentlicht in: | Journal of computational mathematics 2011-03, Vol.29 (2), p.227-242 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method. |
---|---|
ISSN: | 0254-9409 1991-7139 |
DOI: | 10.4208/jcm.1009-m3113 |