ERROR ESTIMATES OF THE FINITE ELEMENT METHOD WITH WEIGHTED BASIS FUNCTIONS FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATION

In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational mathematics 2011-03, Vol.29 (2), p.227-242
Hauptverfasser: Li, Xianggui, Yu, Xijun, Chen, Guangnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|lnε|3/2) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.
ISSN:0254-9409
1991-7139
DOI:10.4208/jcm.1009-m3113