Homogenization of the Poisson Equation in a Thick Periodic Junction

A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 1999-01, Vol.18 (4), p.953-975
1. Verfasser: Mel'nyk, T.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 4
container_start_page 953
container_title Zeitschrift für Analysis und ihre Anwendungen
container_volume 18
creator Mel'nyk, T.A
description A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties.
doi_str_mv 10.4171/ZAA/923
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_zaa_923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_ZAA_923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cc5d7d6d5aa9a09b064e68b9a2b6ca7e4fe677103c6dcd7dbf97949605c46dfa3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElGpeAVLHDiF-i82PkZRoaBK9FAuXCzHdqiBxGAnB_r0uBRxWs3up9XMAHCJ0Q3DAi9e6nohCT0BBeYcl6yi7BQUiFBSEsTZOZin5NusKScCkwI0q9CHVzf4vR59GGDo4LhzcBN8Slkuv6bj3g9Qw-3Om3e4cdEH6w18nAZzOF6As05_JDf_mzPwfLfcNqty_XT_0NTr0lDCxtKYygrLbaW11Ei22Y_jt63UpOVGC8c6x4XAiBpuTSbbTgrJJEeVYdx2ms7A9fGviSGl6Dr1GX2v47fCSB3iq73WKsfP5NWRdH1Sb2GKQ_b1T-WSfqkfmTJYww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogenization of the Poisson Equation in a Thick Periodic Junction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EMIS (European Mathematical Information Service) - All Publications</source><source>European Mathematical Society Publishing House</source><creator>Mel'nyk, T.A</creator><creatorcontrib>Mel'nyk, T.A</creatorcontrib><description>A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties.</description><identifier>ISSN: 0232-2064</identifier><identifier>EISSN: 1661-4534</identifier><identifier>DOI: 10.4171/ZAA/923</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Zeitschrift für Analysis und ihre Anwendungen, 1999-01, Vol.18 (4), p.953-975</ispartof><rights>European Mathematical Society (from 2006)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-cc5d7d6d5aa9a09b064e68b9a2b6ca7e4fe677103c6dcd7dbf97949605c46dfa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,24032,27901,27902</link.rule.ids></links><search><creatorcontrib>Mel'nyk, T.A</creatorcontrib><title>Homogenization of the Poisson Equation in a Thick Periodic Junction</title><title>Zeitschrift für Analysis und ihre Anwendungen</title><addtitle>Z. Anal. Anwend</addtitle><description>A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties.</description><subject>Partial differential equations</subject><issn>0232-2064</issn><issn>1661-4534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElGpeAVLHDiF-i82PkZRoaBK9FAuXCzHdqiBxGAnB_r0uBRxWs3up9XMAHCJ0Q3DAi9e6nohCT0BBeYcl6yi7BQUiFBSEsTZOZin5NusKScCkwI0q9CHVzf4vR59GGDo4LhzcBN8Slkuv6bj3g9Qw-3Om3e4cdEH6w18nAZzOF6As05_JDf_mzPwfLfcNqty_XT_0NTr0lDCxtKYygrLbaW11Ei22Y_jt63UpOVGC8c6x4XAiBpuTSbbTgrJJEeVYdx2ms7A9fGviSGl6Dr1GX2v47fCSB3iq73WKsfP5NWRdH1Sb2GKQ_b1T-WSfqkfmTJYww</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Mel'nyk, T.A</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Homogenization of the Poisson Equation in a Thick Periodic Junction</title><author>Mel'nyk, T.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cc5d7d6d5aa9a09b064e68b9a2b6ca7e4fe677103c6dcd7dbf97949605c46dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mel'nyk, T.A</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für Analysis und ihre Anwendungen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mel'nyk, T.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization of the Poisson Equation in a Thick Periodic Junction</atitle><jtitle>Zeitschrift für Analysis und ihre Anwendungen</jtitle><addtitle>Z. Anal. Anwend</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>18</volume><issue>4</issue><spage>953</spage><epage>975</epage><pages>953-975</pages><issn>0232-2064</issn><eissn>1661-4534</eissn><abstract>A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/ZAA/923</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0232-2064
ispartof Zeitschrift für Analysis und ihre Anwendungen, 1999-01, Vol.18 (4), p.953-975
issn 0232-2064
1661-4534
language eng
recordid cdi_crossref_primary_10_4171_zaa_923
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EMIS (European Mathematical Information Service) - All Publications; European Mathematical Society Publishing House
subjects Partial differential equations
title Homogenization of the Poisson Equation in a Thick Periodic Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20of%20the%20Poisson%20Equation%20in%20a%20Thick%20Periodic%20Junction&rft.jtitle=Zeitschrift%20f%C3%BCr%20Analysis%20und%20ihre%20Anwendungen&rft.au=Mel'nyk,%20T.A&rft.date=1999-01-01&rft.volume=18&rft.issue=4&rft.spage=953&rft.epage=975&rft.pages=953-975&rft.issn=0232-2064&rft.eissn=1661-4534&rft_id=info:doi/10.4171/ZAA/923&rft_dat=%3Cems_cross%3E10_4171_ZAA_923%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true