Homogenization of the Poisson Equation in a Thick Periodic Junction
A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 1999-01, Vol.18 (4), p.953-975 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/923 |