Homogenization of the Poisson Equation in a Thick Periodic Junction

A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 1999-01, Vol.18 (4), p.953-975
1. Verfasser: Mel'nyk, T.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A convergence theorem and asymptotic estimates as $\epsilon \to 0$ are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction $\Omega_{\epsilon}$, of a domain $\Omega_0$ and a large number $N^2$ of $\epsilon$-periodically situated thin cylinders with thickness of order $\epsilon = O(\frac{1}{N})$. For this junction, we construct an extension operator and study its properties.
ISSN:0232-2064
1661-4534
DOI:10.4171/ZAA/923