Convergence of the Newton-Kantorovich Method under Vertgeim Conditions: a New Improvement
Let f: B(x_0, R) \subset X \to Y be an operator from a closed ball of a Banach space X to a Banach space Y . We give new conditions to ensure the convergence of Newton-Kantorovich approximations toward a solution of the equation f(x) = 0 , under the hypothesis that f' be Hölder continuous. The...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 1998-01, Vol.17 (2), p.271-280 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f: B(x_0, R) \subset X \to Y
be an operator from a closed ball of a Banach space
X
to a Banach space
Y
. We give new conditions to ensure the convergence of Newton-Kantorovich approximations toward a solution of the equation
f(x) = 0
, under the hypothesis that
f'
be Hölder continuous. The case of
f'
being Hölder continuous in a generalized sense is analyzed as well. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/zaa/821 |