Convergence of the Newton-Kantorovich Method under Vertgeim Conditions: a New Improvement

Let f: B(x_0, R) \subset X \to Y be an operator from a closed ball of a Banach space X to a Banach space Y . We give new conditions to ensure the convergence of Newton-Kantorovich approximations toward a solution of the equation f(x) = 0 , under the hypothesis that f' be Hölder continuous. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 1998-01, Vol.17 (2), p.271-280
Hauptverfasser: De Pascale, Espedito, Zabreiko, Petr P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f: B(x_0, R) \subset X \to Y be an operator from a closed ball of a Banach space X to a Banach space Y . We give new conditions to ensure the convergence of Newton-Kantorovich approximations toward a solution of the equation f(x) = 0 , under the hypothesis that f' be Hölder continuous. The case of f' being Hölder continuous in a generalized sense is analyzed as well.
ISSN:0232-2064
1661-4534
DOI:10.4171/zaa/821