A Class of Linear Integral Equations and Systems with Sum and Difference Kernel

By means of Fourier transform and Cauchy integral techniques a complete investigation of a class of linear integral equations and corresponding systems of equations of cross-correlation type in the Lebesgue spaces L^1 and L^2 is performed. Integral equations of first and second kind are reduced to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 2003-01, Vol.22 (3), p.647-687
1. Verfasser: von Wolfersdorf, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By means of Fourier transform and Cauchy integral techniques a complete investigation of a class of linear integral equations and corresponding systems of equations of cross-correlation type in the Lebesgue spaces L^1 and L^2 is performed. Integral equations of first and second kind are reduced to explicitly solvable Riemann-Hilbert problems for a holomorphic function in the upper half-plane and the system of equations to conjugacy problems for a sectionally holomorphic function, where in the case of a finite interval also the analytic continuation of the solutions to the lower half-plane can be carried out in explicit way. Further, a resolvent representation of the solution to the integral equation and its adjoint equation is derived.
ISSN:0232-2064
1661-4534
DOI:10.4171/ZAA/1167