A Class of Linear Integral Equations and Systems with Sum and Difference Kernel
By means of Fourier transform and Cauchy integral techniques a complete investigation of a class of linear integral equations and corresponding systems of equations of cross-correlation type in the Lebesgue spaces L^1 and L^2 is performed. Integral equations of first and second kind are reduced to e...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 2003-01, Vol.22 (3), p.647-687 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By means of Fourier transform and Cauchy integral techniques a complete investigation of a class of linear integral equations and corresponding systems of equations of cross-correlation type in the Lebesgue spaces L^1 and L^2 is performed. Integral equations of first and second kind are reduced to explicitly solvable Riemann-Hilbert problems for a holomorphic function in the upper half-plane and the system of equations to conjugacy problems for a sectionally holomorphic function, where in the case of a finite interval also the analytic continuation of the solutions to the lower half-plane can be carried out in explicit way. Further, a resolvent representation of the solution to the integral equation and its adjoint equation is derived. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/1167 |