A General Inverse Problem for a Memory Kernel in One-Dimensional Viscoelasticity
A general inverse problem for the identification of a memory kernel in viscoelasticity in one space dimension is dealt with, where the kernel is represented by a finite sum of products of known spatially dependent functions and unknown time-dependent functions. Using the Laplace transform method an...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 2002-01, Vol.21 (2), p.465-483 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A general inverse problem for the identification of a memory kernel in viscoelasticity in one space dimension is dealt with, where the kernel is represented by a finite sum of products of known spatially dependent functions and unknown time-dependent functions. Using the Laplace transform method an existence and uniqueness theorem for the memory kernel is proved. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/1087 |