A General Inverse Problem for a Memory Kernel in One-Dimensional Viscoelasticity

A general inverse problem for the identification of a memory kernel in viscoelasticity in one space dimension is dealt with, where the kernel is represented by a finite sum of products of known spatially dependent functions and unknown time-dependent functions. Using the Laplace transform method an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 2002-01, Vol.21 (2), p.465-483
Hauptverfasser: Janno, Jaan, von Wolfersdorf, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general inverse problem for the identification of a memory kernel in viscoelasticity in one space dimension is dealt with, where the kernel is represented by a finite sum of products of known spatially dependent functions and unknown time-dependent functions. Using the Laplace transform method an existence and uniqueness theorem for the memory kernel is proved.
ISSN:0232-2064
1661-4534
DOI:10.4171/ZAA/1087