Test sets for factorization properties of modules
Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to\ a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the un...
Gespeichert in:
Veröffentlicht in: | Rendiconti - Seminario matematico della Università di Padova 2020-01, Vol.144, p.217-238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to\ a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring $R$ and on additional set-theoretic hypotheses. For $R$ commutative noetherian of Krull dimension $0 < d < \infty$, we show that the assertion 'projectivity is a factorization property with respect to a single epimorphism' is independent of ZFC + GCH. We also show that if $R$ is any ring and there exists a strongly compact cardinal $\kappa > |R|$, then the category of all projective modules is $\kappa$-accessible. |
---|---|
ISSN: | 0041-8994 2240-2926 |
DOI: | 10.4171/RSMUP/66 |