Test sets for factorization properties of modules

Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to\ a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rendiconti - Seminario matematico della Università di Padova 2020-01, Vol.144, p.217-238
Hauptverfasser: Šaroch, Jan, Trlifaj, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to\ a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring $R$ and on additional set-theoretic hypotheses. For $R$ commutative noetherian of Krull dimension $0 < d < \infty$, we show that the assertion 'projectivity is a factorization property with respect to a single epimorphism' is independent of ZFC + GCH. We also show that if $R$ is any ring and there exists a strongly compact cardinal $\kappa > |R|$, then the category of all projective modules is $\kappa$-accessible.
ISSN:0041-8994
2240-2926
DOI:10.4171/RSMUP/66