On the Sylvester–Gallai theorem for conics

In the present note we give a new proof of a result due to Wiseman and Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Speci cally, we use Cremona transformation of the projectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rendiconti - Seminario matematico della Università di Padova 2016-01, Vol.136, p.191-203
Hauptverfasser: Czapliński, Adam, Dumnicki, Marcin, Farnik, Łucja, Gwoździewicz, Janusz, Lampa-Baczyńska, Magdalena, Malara, Grzegorz, Szemberg, Tomasz, Szpond, Justyna, Tutaj-Gasińska, Halszka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present note we give a new proof of a result due to Wiseman and Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Speci cally, we use Cremona transformation of the projective plane and Hirzebruch inequality (1).
ISSN:0041-8994
2240-2926
DOI:10.4171/RSMUP/136-13