On the Sylvester–Gallai theorem for conics
In the present note we give a new proof of a result due to Wiseman and Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Speci cally, we use Cremona transformation of the projectiv...
Gespeichert in:
Veröffentlicht in: | Rendiconti - Seminario matematico della Università di Padova 2016-01, Vol.136, p.191-203 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present note we give a new proof of a result due to Wiseman and Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Speci cally, we use Cremona transformation of the projective plane and Hirzebruch inequality (1). |
---|---|
ISSN: | 0041-8994 2240-2926 |
DOI: | 10.4171/RSMUP/136-13 |