Proper base change for separated locally proper maps

We introduce and study the notion of a locally proper map between topological spaces.We show that fundamental constructions of sheaf theory, more precisely proper base change, projection formula, and Verdier duality, can be extended from continuous maps between locally compact Hausdor spaces to sepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rendiconti - Seminario matematico della Università di Padova 2016-01, Vol.135, p.223-250
Hauptverfasser: Schnürer, Olaf, Soergel, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study the notion of a locally proper map between topological spaces.We show that fundamental constructions of sheaf theory, more precisely proper base change, projection formula, and Verdier duality, can be extended from continuous maps between locally compact Hausdor spaces to separated locally proper maps between arbitrary topological spaces.
ISSN:0041-8994
2240-2926
DOI:10.4171/RSMUP/135-13