Localizations of tensor products
A homomorphism ${\lambda}:A\rightarrow B$ between $R$-modules is called a localization if for all ${\varphi} \in Hom_{R}(A,B)$ there is a unique ${\psi} \in Hom_{R}(B,B)$ such that ${\varphi} ={\psi} \circ {\lambda} $. We investigate localizations of tensor products of torsion-free abelian groups. F...
Gespeichert in:
Veröffentlicht in: | Rendiconti - Seminario matematico della Università di Padova 2014-01, Vol.131, p.237-258 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A homomorphism ${\lambda}:A\rightarrow B$ between $R$-modules is called a localization if for all ${\varphi} \in Hom_{R}(A,B)$ there is a unique ${\psi} \in Hom_{R}(B,B)$ such that ${\varphi} ={\psi} \circ {\lambda} $. We investigate localizations of tensor products of torsion-free abelian groups. For example, we show that the natural multiplication map ${\mu}:R\otimes R\rightarrow R$ is a lo cal iza tion if and only if $R$ is an E-ring. |
---|---|
ISSN: | 0041-8994 2240-2926 |
DOI: | 10.4171/RSMUP/131-14 |