Localizations of tensor products

A homomorphism ${\lambda}:A\rightarrow B$ between $R$-modules is called a localization if for all ${\varphi} \in Hom_{R}(A,B)$ there is a unique ${\psi} \in Hom_{R}(B,B)$ such that ${\varphi} ={\psi} \circ {\lambda} $. We investigate localizations of tensor products of torsion-free abelian groups. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rendiconti - Seminario matematico della Università di Padova 2014-01, Vol.131, p.237-258
Hauptverfasser: Dugas, Manfred, Aceves, Kelly, Wagner, Bradley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A homomorphism ${\lambda}:A\rightarrow B$ between $R$-modules is called a localization if for all ${\varphi} \in Hom_{R}(A,B)$ there is a unique ${\psi} \in Hom_{R}(B,B)$ such that ${\varphi} ={\psi} \circ {\lambda} $. We investigate localizations of tensor products of torsion-free abelian groups. For example, we show that the natural multiplication map ${\mu}:R\otimes R\rightarrow R$ is a lo cal iza tion if and only if $R$ is an E-ring.
ISSN:0041-8994
2240-2926
DOI:10.4171/RSMUP/131-14