Degeneration of K3 surfaces with non-symplectic automorphisms

We prove that a K3 surface with an automorphism acting on the global 2 -forms by a primitive m -th root of unity, m \neq 1,2,3,4,6 , does not degenerate (assuming the existence of the so-called Kulikov models). A key result used to prove this is the rationality of the actions of automorphisms on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rendiconti - Seminario matematico della Università di Padova 2023-01, Vol.150, p.227-245, Article 227
1. Verfasser: Matsumoto, Yuya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a K3 surface with an automorphism acting on the global 2 -forms by a primitive m -th root of unity, m \neq 1,2,3,4,6 , does not degenerate (assuming the existence of the so-called Kulikov models). A key result used to prove this is the rationality of the actions of automorphisms on the graded quotients of the weight filtration of the l -adic cohomology groups of the surface.
ISSN:0041-8994
2240-2926
DOI:10.4171/rsmup/123