Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds I
We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona-type theorems, properties of divisors, holomorphic analogs of the Peter–Weyl appro...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2015-01, Vol.31 (3), p.989-1032 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona-type theorems, properties of divisors, holomorphic analogs of the Peter–Weyl approximation theorem, Hartogs-type theorems, characterization of uniqueness sets. The model examples of these algebras are: (1) Bohr’s algebra of holomorphic almost periodic functions on tube domains; (2) algebra of all fibrewise bounded holomorphic functions (e.g., arising in the corona problem for $H^\infty$). Our approach is based on an extension of the classical Oka–Cartan theory to coherent-type sheaves on the maximal ideal spaces of these algebras – topological spaces having some features of complex manifolds. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/861 |