Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds I

We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona-type theorems, properties of divisors, holomorphic analogs of the Peter–Weyl appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2015-01, Vol.31 (3), p.989-1032
Hauptverfasser: Brudnyi, Alexander, Kinzebulatov, Damir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona-type theorems, properties of divisors, holomorphic analogs of the Peter–Weyl approximation theorem, Hartogs-type theorems, characterization of uniqueness sets. The model examples of these algebras are: (1) Bohr’s algebra of holomorphic almost periodic functions on tube domains; (2) algebra of all fibrewise bounded holomorphic functions (e.g., arising in the corona problem for $H^\infty$). Our approach is based on an extension of the classical Oka–Cartan theory to coherent-type sheaves on the maximal ideal spaces of these algebras – topological spaces having some features of complex manifolds.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/861