Asymptotic $N$-soliton-like solutions of the fractional Korteweg–de Vries equation

We construct N -soliton solutions for the fractional Korteweg–de Vries (fKdV) equation \partial_t u - \partial_x(|D|^{\alpha}u - u^2 )=0, in the whole sub-critical range \alpha \in(1/2,2) . More precisely, if Q_c denotes the ground state solution associated to (fKdV) evolving with velocity c , then,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2023-01, Vol.39 (5), p.1813-1862
1. Verfasser: Eychenne, Arnaud
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct N -soliton solutions for the fractional Korteweg–de Vries (fKdV) equation \partial_t u - \partial_x(|D|^{\alpha}u - u^2 )=0, in the whole sub-critical range \alpha \in(1/2,2) . More precisely, if Q_c denotes the ground state solution associated to (fKdV) evolving with velocity c , then, given 0
ISSN:0213-2230
2235-0616
DOI:10.4171/rmi/1396