Asymptotic $N$-soliton-like solutions of the fractional Korteweg–de Vries equation
We construct N -soliton solutions for the fractional Korteweg–de Vries (fKdV) equation \partial_t u - \partial_x(|D|^{\alpha}u - u^2 )=0, in the whole sub-critical range \alpha \in(1/2,2) . More precisely, if Q_c denotes the ground state solution associated to (fKdV) evolving with velocity c , then,...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2023-01, Vol.39 (5), p.1813-1862 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct N -soliton solutions for the fractional Korteweg–de Vries (fKdV) equation
\partial_t u - \partial_x(|D|^{\alpha}u - u^2 )=0,
in the whole sub-critical range \alpha \in(1/2,2) . More precisely, if Q_c denotes the ground state solution associated to (fKdV) evolving with velocity c , then, given 0 |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1396 |