On secant defectiveness and identifiability of Segre–Veronese varieties

We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2022-01, Vol.38 (5), p.1605-1635
Hauptverfasser: Laface, Antonio, Massarenti, Alex, Rischter, Rick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1635
container_issue 5
container_start_page 1605
container_title Revista matemática iberoamericana
container_volume 38
creator Laface, Antonio
Massarenti, Alex
Rischter, Rick
description We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify possibly singular 2-secant defective toric surfaces and we study secant defectiveness of Losev–Manin spaces.
doi_str_mv 10.4171/rmi/1336
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_rmi_1336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_rmi_1336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-8b42e932c91c72b00cb3f1d54b8e7c69a8b0fca8b75bc085a9d72420d2fbf4a33</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoOFbBR8jSzdg_fzK3pRQvhUIXtm6HXP5IpJ2RJBS68x18Q5_EKbo5Bw4fZ_ExdivgXolGzOM-zIWU9RkrEGVVQi3qc1YACllOA1yyq5Q-AFABQMGW64EnsnrI3JEnm8OBBkqJ68Hx4GjIwQdtwi7kIx89f6X3SD9f328Ux4kjftAxUA6UrtmF17tEN_89Y9unx83ipVytn5eLh1VpETGXrVFInUTbCdugAbBGeuEqZVpqbN3p1oC3UzaVsdBWunMNKgSH3nilpZyxu79fG8eUIvn-M4a9jsdeQH9S0E8K-pMC-QtQTlD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On secant defectiveness and identifiability of Segre–Veronese varieties</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Laface, Antonio ; Massarenti, Alex ; Rischter, Rick</creator><creatorcontrib>Laface, Antonio ; Massarenti, Alex ; Rischter, Rick</creatorcontrib><description>We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify possibly singular 2-secant defective toric surfaces and we study secant defectiveness of Losev–Manin spaces.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/rmi/1336</identifier><language>eng</language><ispartof>Revista matemática iberoamericana, 2022-01, Vol.38 (5), p.1605-1635</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Laface, Antonio</creatorcontrib><creatorcontrib>Massarenti, Alex</creatorcontrib><creatorcontrib>Rischter, Rick</creatorcontrib><title>On secant defectiveness and identifiability of Segre–Veronese varieties</title><title>Revista matemática iberoamericana</title><description>We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify possibly singular 2-secant defective toric surfaces and we study secant defectiveness of Losev–Manin spaces.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYhYMoOFbBR8jSzdg_fzK3pRQvhUIXtm6HXP5IpJ2RJBS68x18Q5_EKbo5Bw4fZ_ExdivgXolGzOM-zIWU9RkrEGVVQi3qc1YACllOA1yyq5Q-AFABQMGW64EnsnrI3JEnm8OBBkqJ68Hx4GjIwQdtwi7kIx89f6X3SD9f328Ux4kjftAxUA6UrtmF17tEN_89Y9unx83ipVytn5eLh1VpETGXrVFInUTbCdugAbBGeuEqZVpqbN3p1oC3UzaVsdBWunMNKgSH3nilpZyxu79fG8eUIvn-M4a9jsdeQH9S0E8K-pMC-QtQTlD4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Laface, Antonio</creator><creator>Massarenti, Alex</creator><creator>Rischter, Rick</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>On secant defectiveness and identifiability of Segre–Veronese varieties</title><author>Laface, Antonio ; Massarenti, Alex ; Rischter, Rick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-8b42e932c91c72b00cb3f1d54b8e7c69a8b0fca8b75bc085a9d72420d2fbf4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laface, Antonio</creatorcontrib><creatorcontrib>Massarenti, Alex</creatorcontrib><creatorcontrib>Rischter, Rick</creatorcontrib><collection>CrossRef</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laface, Antonio</au><au>Massarenti, Alex</au><au>Rischter, Rick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On secant defectiveness and identifiability of Segre–Veronese varieties</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1605</spage><epage>1635</epage><pages>1605-1635</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify possibly singular 2-secant defective toric surfaces and we study secant defectiveness of Losev–Manin spaces.</abstract><doi>10.4171/rmi/1336</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0213-2230
ispartof Revista matemática iberoamericana, 2022-01, Vol.38 (5), p.1605-1635
issn 0213-2230
2235-0616
language eng
recordid cdi_crossref_primary_10_4171_rmi_1336
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title On secant defectiveness and identifiability of Segre–Veronese varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20secant%20defectiveness%20and%20identifiability%20of%20Segre%E2%80%93Veronese%20varieties&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Laface,%20Antonio&rft.date=2022-01-01&rft.volume=38&rft.issue=5&rft.spage=1605&rft.epage=1635&rft.pages=1605-1635&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/rmi/1336&rft_dat=%3Ccrossref%3E10_4171_rmi_1336%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true