On secant defectiveness and identifiability of Segre–Veronese varieties
We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify poss...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2022-01, Vol.38 (5), p.1605-1635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an almost asymptotically sharp bound for the non-secant defectiveness and identifiability of Segre–Veronese varieties. We also provide new examples of defective Segre–Veronese varieties, and implement our methods in Magma. Finally, we give two applications of our techniques: we classify possibly singular 2-secant defective toric surfaces and we study secant defectiveness of Losev–Manin spaces. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1336 |