Restriction estimates for hyperbolic paraboloids in higher dimensions via bilinear estimates
Let \mathbb{H} be a (d-1) -dimensional hyperbolic paraboloid in \mathbb{R}^d and let Ef be the Fourier extension operator associated to \mathbb{H} , with f supported in B^{d-1}(0,2) . We prove that \lVert Ef \rVert_{L^p (B(0,R))} \leq C_{\varepsilon}R^{\varepsilon}\lVert f \rVert_{L^p} for all p \ge...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2022-01, Vol.38 (5), p.1453-1471, Article 1453 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathbb{H} be a (d-1) -dimensional hyperbolic paraboloid in \mathbb{R}^d and let Ef be the Fourier extension operator associated to \mathbb{H} , with f supported in B^{d-1}(0,2) . We prove that \lVert Ef \rVert_{L^p (B(0,R))} \leq C_{\varepsilon}R^{\varepsilon}\lVert f \rVert_{L^p} for all p \geq 2(d+2)/d whenever d/2\geq m + 1 , where m is the minimum between the number of positive and negative principal curvatures of \mathbb{H} . Bilinear restriction estimates for \mathbb{H} proved by S. Lee and Vargas play an important role in our argument. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1310 |