On the infinitesimal Terracini Lemma
In this paper we prove an infinitesimal version of the classical Terracini Lemma for 3-secant planes to a variety. Precisely we prove that if X \subseteq \mathcal P' is an irreducible, non-degenerate, projective complex variety of dimension n with r \geq 3n + 2 , such that the variety of oscula...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2021-04, Vol.32 (1), p.63-78 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove an infinitesimal version of the classical Terracini Lemma for 3-secant planes to a variety. Precisely we prove that if X \subseteq \mathcal P' is an irreducible, non-degenerate, projective complex variety of dimension n with r \geq 3n + 2 , such that the variety of osculating planes to curves in X has the expected dimension 3n and for every 0-dimensional, curvilinear scheme \gamma of length 3 contained in X the family of hyperplanes sections of X which are singular along \gamma has dimension larger that r-3(n+1) , then X is 2-secant defective. |
---|---|
ISSN: | 1120-6330 1720-0768 |
DOI: | 10.4171/rlm/926 |