Approximating the inverse matrix of the G-limit through changes of variables in the plane
Let $A_j$ be a sequence of coercive symmetric matrices of $L^\infty(\mathbb{R}^2)^{2\times 2}$ with $det \, A_j=1$ which $G$-converges to $A$. We prove that there exists a sequence of $K$-quasiconformal mappings $F_j$ which converge locally uniformly to a $K$-quasiconformal mapping $F$ such that $A_...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2006-01, Vol.17 (2), p.167-174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $A_j$ be a sequence of coercive symmetric matrices of $L^\infty(\mathbb{R}^2)^{2\times 2}$ with $det \, A_j=1$ which $G$-converges to $A$. We prove that there exists a sequence of $K$-quasiconformal mappings $F_j$ which converge locally uniformly to a $K$-quasiconformal mapping $F$ such that $A_j^{-1}\circ F_j^{-1}$ $G$-converges to $A^{-1}\circ F^{-1}$. The result is specific to the two dimensional case but a similar result holds in dimension $1$. |
---|---|
ISSN: | 1120-6330 1720-0768 |
DOI: | 10.4171/RLM/461 |