Approximating the inverse matrix of the G-limit through changes of variables in the plane

Let $A_j$ be a sequence of coercive symmetric matrices of $L^\infty(\mathbb{R}^2)^{2\times 2}$ with $det \, A_j=1$ which $G$-converges to $A$. We prove that there exists a sequence of $K$-quasiconformal mappings $F_j$ which converge locally uniformly to a $K$-quasiconformal mapping $F$ such that $A_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2006-01, Vol.17 (2), p.167-174
Hauptverfasser: Moscariello, Gioconda, Sbordone, Carlo, Murat, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A_j$ be a sequence of coercive symmetric matrices of $L^\infty(\mathbb{R}^2)^{2\times 2}$ with $det \, A_j=1$ which $G$-converges to $A$. We prove that there exists a sequence of $K$-quasiconformal mappings $F_j$ which converge locally uniformly to a $K$-quasiconformal mapping $F$ such that $A_j^{-1}\circ F_j^{-1}$ $G$-converges to $A^{-1}\circ F^{-1}$. The result is specific to the two dimensional case but a similar result holds in dimension $1$.
ISSN:1120-6330
1720-0768
DOI:10.4171/RLM/461