Unirationality of varieties described by families of projective hypersurfaces
Let \mathscr{X}\to W be a flat family of generically irreducible hypersurfaces of degree d\geq 2 in \mathbb{P}^n with singular locus of dimension t , with W unirational of dimension r . We prove that if n is large enough with respect to d , r and t , then \mathscr{X} is unirational. This extends res...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2023-01, Vol.34 (3), p.577-595 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathscr{X}\to W be a flat family of generically irreducible hypersurfaces of degree d\geq 2 in \mathbb{P}^n with singular locus of dimension t , with W unirational of dimension r . We prove that if n is large enough with respect to d , r and t , then \mathscr{X} is unirational. This extends results by J. Harris, B. Mazur and R. Pandharipande in [Duke Math. J. 95 (1998), 125–160] and A. Predonzan in [Rend. Sem. Mat. Univ. Padova 31 (1961), 281–293]. |
---|---|
ISSN: | 1120-6330 1720-0768 |
DOI: | 10.4171/rlm/1019 |