Unirationality of varieties described by families of projective hypersurfaces

Let \mathscr{X}\to W be a flat family of generically irreducible hypersurfaces of degree d\geq 2 in \mathbb{P}^n with singular locus of dimension t , with W unirational of dimension r . We prove that if n is large enough with respect to d , r and t , then \mathscr{X} is unirational. This extends res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2023-01, Vol.34 (3), p.577-595
Hauptverfasser: Ciliberto, Ciro, Sacchi, Duccio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \mathscr{X}\to W be a flat family of generically irreducible hypersurfaces of degree d\geq 2 in \mathbb{P}^n with singular locus of dimension t , with W unirational of dimension r . We prove that if n is large enough with respect to d , r and t , then \mathscr{X} is unirational. This extends results by J. Harris, B. Mazur and R. Pandharipande in [Duke Math. J. 95 (1998), 125–160] and A. Predonzan in [Rend. Sem. Mat. Univ. Padova 31 (1961), 281–293].
ISSN:1120-6330
1720-0768
DOI:10.4171/rlm/1019