The Strong Slope Conjecture for twisted generalized Whitehead doubles

The Slope Conjecture proposed by Garoufalidis asserts that the degree of the colored Jones polynomial determines a boundary slope, and its refinement, the Strong Slope Conjecture proposed by Kalfagianni and Tran asserts that the linear term in the degree determines the topology of an essential surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum topology 2020-01, Vol.11 (3), p.545-608
Hauptverfasser: Baker, Kenneth, Motegi, Kimihiko, Takata, Toshie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Slope Conjecture proposed by Garoufalidis asserts that the degree of the colored Jones polynomial determines a boundary slope, and its refinement, the Strong Slope Conjecture proposed by Kalfagianni and Tran asserts that the linear term in the degree determines the topology of an essential surface that satisfies the Slope Conjecture. Under certain hypotheses, we show that twisted, generalized Whitehead doubles of a knot satisfies the Slope Conjecture and the Strong Slope Conjecture if the original knot does. Additionally, we provide a proof that there areWhitehead doubles which are not adequate.
ISSN:1663-487X
1664-073X
DOI:10.4171/QT/242