Group-subgroup subfactors revisited
For all Frobenius groups and a large class of finite multiply transitive permutation groups, we show that the corresponding group-subgroup subfactors are completely characterized by their principal graphs. The class includes all the sharply k -transitive permutation groups for k=2,3,4 , and in parti...
Gespeichert in:
Veröffentlicht in: | Quantum topology 2024-04, Vol.15 (3), p.721-778 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For all Frobenius groups and a large class of finite multiply transitive permutation groups, we show that the corresponding group-subgroup subfactors are completely characterized by their principal graphs. The class includes all the sharply k -transitive permutation groups for k=2,3,4 , and in particular the Mathieu group M_{11} of degree 11. |
---|---|
ISSN: | 1663-487X 1664-073X |
DOI: | 10.4171/qt/211 |