Group-subgroup subfactors revisited

For all Frobenius groups and a large class of finite multiply transitive permutation groups, we show that the corresponding group-subgroup subfactors are completely characterized by their principal graphs. The class includes all the sharply k -transitive permutation groups for k=2,3,4 , and in parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum topology 2024-04, Vol.15 (3), p.721-778
1. Verfasser: Izumi, Masaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For all Frobenius groups and a large class of finite multiply transitive permutation groups, we show that the corresponding group-subgroup subfactors are completely characterized by their principal graphs. The class includes all the sharply k -transitive permutation groups for k=2,3,4 , and in particular the Mathieu group M_{11} of degree 11.
ISSN:1663-487X
1664-073X
DOI:10.4171/qt/211