Seifert hypersurfaces of 2-knots and Chern–Simons functional

For a given smooth 2-knot in S^4 , we relate the existence of a smooth Seifert hypersurface of a certain class to the existence of irreducible SU(2)-representations of its knot group. For example, we see that any smooth 2-knot having the Poincaré homology 3-sphere as a Seifert hypersurface has at le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum topology 2022-03, Vol.13 (2), p.335-405
1. Verfasser: Taniguchi, Masaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given smooth 2-knot in S^4 , we relate the existence of a smooth Seifert hypersurface of a certain class to the existence of irreducible SU(2)-representations of its knot group. For example, we see that any smooth 2-knot having the Poincaré homology 3-sphere as a Seifert hypersurface has at least four irreducible SU(2)-representations of its knot group. This result is false in the topological category. The proof uses a quantitative formulation of instanton Floer homology. Using similar techniques, we also obtain similar results about codimension-1 embeddings of homology 3-spheres into closed definite 4-manifolds and a fixed point type theorem for instanton Floer homology.
ISSN:1663-487X
1664-073X
DOI:10.4171/qt/165