Surgery on links of linking number zero and the Heegaard Floer $d$-invariant

We study Heegaard Floer homology and various related invariants (such as the $h$-function) for two-component L-space links with linking number zero. For such links, we explicitly describe the relationship between the $h$-function, the Sato–Levine invariant and the Casson invariant. We give a formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum topology 2020-01, Vol.11 (2), p.323-378
Hauptverfasser: Gorsky, Eugene, Liu, Beibei, Moore, Allison
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Heegaard Floer homology and various related invariants (such as the $h$-function) for two-component L-space links with linking number zero. For such links, we explicitly describe the relationship between the $h$-function, the Sato–Levine invariant and the Casson invariant. We give a formula for the Heegaard Floer $d$-invariants of integral surgeries on two-component L-space links of linking number zero in terms of the $h$-function, generalizing a formula of Ni and Wu. As a consequence, for such links with unknotted components, we characterize L-space surgery slopes in terms of the $\nu^{+}$-invariants of the knots obtained from blowing down the components. We give a proof of a skein inequality for the $d$-invariants of +1 surgeries along linking number zero links that differ by a crossing change. We also describe bounds on the smooth four-genus of links in terms of the $h$-function, expanding on previous work of the second author, and use these bounds to calculate the four-genus in several examples of links.
ISSN:1663-487X
1664-073X
DOI:10.4171/QT/137