On Enriques Surfaces with Four Cusps
We study Enriques surfaces with four disjoint A$_2$-configurations. In particular, we construct open Enriques surfaces with fundamental groups $(\mathbb Z/3\mathbb Z)^{\oplus 2} \times \mathbb Z/2\mathbb Z$ and $\mathbb Z/6\mathbb Z$, completing the picture of the A$_2$-case from Keum and Zhang (Fun...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2018-01, Vol.54 (3), p.433-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Enriques surfaces with four disjoint A$_2$-configurations. In particular, we construct open Enriques surfaces with fundamental groups $(\mathbb Z/3\mathbb Z)^{\oplus 2} \times \mathbb Z/2\mathbb Z$ and $\mathbb Z/6\mathbb Z$, completing the picture of the A$_2$-case from Keum and Zhang (Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds, J. Pure Appl. Algebra 170 (2002), 67–91; Zbl 1060.14057). We also construct an explicit Gorenstein $\mathbb Q$-homology projective plane of singularity type A$_3+3$A$_2$, supporting an open case from Hwang, Keum and Ohashi (Gorenstein $\mathbb Q$-homology projective planes, Science China Mathematics 58 (2015), 501–512; Zbl 1314.14072). |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.4171/PRIMS/54-3-1 |