L_{p}$-dual Brunn–Minkowski inequality for intersection bodies

In 2003, associated with the radial Minkowski additions of star bodies, Zhao and Leng established the dual Brunn–Minkowski inequality for intersection bodies. In this paper, associated with the L_{p} -radial Minkowski combinations of star bodies, we firstly prove the L_{p} -dual Brunn–Minkowski ineq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Portugaliae mathematica 2025-02
1. Verfasser: Wang, Weidong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2003, associated with the radial Minkowski additions of star bodies, Zhao and Leng established the dual Brunn–Minkowski inequality for intersection bodies. In this paper, associated with the L_{p} -radial Minkowski combinations of star bodies, we firstly prove the L_{p} -dual Brunn–Minkowski inequality for intersection bodies. Further, associated with the L_{p} -Minkowski combinations of convex bodies, we give the L_{p} -Brunn–Minkowski inequality for star dualities of intersection bodies.
ISSN:0032-5155
1662-2758
DOI:10.4171/pm/2142