On the stabilization and controllability for a third order linear equation
We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$...
Gespeichert in:
Veröffentlicht in: | Portugaliae mathematica 2011-01, Vol.68 (3), p.279-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 3 |
container_start_page | 279 |
container_title | Portugaliae mathematica |
container_volume | 68 |
creator | da Silva, Patrícia Nunes Vasconcellos, Carlos Frederico |
description | We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$ and $\alpha$, $\beta$ and $\gamma$ are real constants. Using multiplier techniques, HUM method and a special uniform continuation theorem, we prove the exponential decay of the total energy and the boundary exact controllability associated with the above equation. Moreover, we characterize a set of lengths $L$, named $\mathcal{X}$, in which it is possible to find non null solutions for the above equation with constant (in time) energy and we show it depends strongly on the parameters $\alpha$, $\beta$ and $\gamma$. |
doi_str_mv | 10.4171/PM/1892 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_pm_1892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_PM_1892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-c74b0ed08902bbcc83315e0d56148bd28f6762bbe1dbad4e10d34afd518de5083</originalsourceid><addsrcrecordid>eNo90E1PwzAMBuAIgUQZiL8QiQOnsnw0aXpEE5_atB3gHKWJKzq1zUiyw_j1dCviZMl-bFkvQreUPBS0pPPNak5Vxc5QRqVkOSuFOkcZIZzlggpxia5i3BLCuKxkht7XA05fgGMyddu1Pya1fsBmcNj6IQXfdad-OuDGB2xG2waHfXAQcNcOYAKG7_1p6xpdNKaLcPNXZ-jz-elj8Zov1y9vi8dlblmhUm7LoibgiKoIq2trFedUAHFC0kLVjqlGlnKcAHW1cQVQ4nhhGieociCI4jN0P921wccYoNG70PYmHDQl-hiB3vX6GMEo7yYJfdRbvw_D-Ne_2qwm9QvDpFqB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the stabilization and controllability for a third order linear equation</title><source>European Mathematical Society Publishing House</source><creator>da Silva, Patrícia Nunes ; Vasconcellos, Carlos Frederico</creator><creatorcontrib>da Silva, Patrícia Nunes ; Vasconcellos, Carlos Frederico</creatorcontrib><description>We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$ and $\alpha$, $\beta$ and $\gamma$ are real constants. Using multiplier techniques, HUM method and a special uniform continuation theorem, we prove the exponential decay of the total energy and the boundary exact controllability associated with the above equation. Moreover, we characterize a set of lengths $L$, named $\mathcal{X}$, in which it is possible to find non null solutions for the above equation with constant (in time) energy and we show it depends strongly on the parameters $\alpha$, $\beta$ and $\gamma$.</description><identifier>ISSN: 0032-5155</identifier><identifier>EISSN: 1662-2758</identifier><identifier>DOI: 10.4171/PM/1892</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Portugaliae mathematica, 2011-01, Vol.68 (3), p.279-296</ispartof><rights>European Mathematical Society (from 2008)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>da Silva, Patrícia Nunes</creatorcontrib><creatorcontrib>Vasconcellos, Carlos Frederico</creatorcontrib><title>On the stabilization and controllability for a third order linear equation</title><title>Portugaliae mathematica</title><addtitle>Port. Math</addtitle><description>We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$ and $\alpha$, $\beta$ and $\gamma$ are real constants. Using multiplier techniques, HUM method and a special uniform continuation theorem, we prove the exponential decay of the total energy and the boundary exact controllability associated with the above equation. Moreover, we characterize a set of lengths $L$, named $\mathcal{X}$, in which it is possible to find non null solutions for the above equation with constant (in time) energy and we show it depends strongly on the parameters $\alpha$, $\beta$ and $\gamma$.</description><subject>Partial differential equations</subject><issn>0032-5155</issn><issn>1662-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo90E1PwzAMBuAIgUQZiL8QiQOnsnw0aXpEE5_atB3gHKWJKzq1zUiyw_j1dCviZMl-bFkvQreUPBS0pPPNak5Vxc5QRqVkOSuFOkcZIZzlggpxia5i3BLCuKxkht7XA05fgGMyddu1Pya1fsBmcNj6IQXfdad-OuDGB2xG2waHfXAQcNcOYAKG7_1p6xpdNKaLcPNXZ-jz-elj8Zov1y9vi8dlblmhUm7LoibgiKoIq2trFedUAHFC0kLVjqlGlnKcAHW1cQVQ4nhhGieociCI4jN0P921wccYoNG70PYmHDQl-hiB3vX6GMEo7yYJfdRbvw_D-Ne_2qwm9QvDpFqB</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>da Silva, Patrícia Nunes</creator><creator>Vasconcellos, Carlos Frederico</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>On the stabilization and controllability for a third order linear equation</title><author>da Silva, Patrícia Nunes ; Vasconcellos, Carlos Frederico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-c74b0ed08902bbcc83315e0d56148bd28f6762bbe1dbad4e10d34afd518de5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Patrícia Nunes</creatorcontrib><creatorcontrib>Vasconcellos, Carlos Frederico</creatorcontrib><collection>CrossRef</collection><jtitle>Portugaliae mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Patrícia Nunes</au><au>Vasconcellos, Carlos Frederico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stabilization and controllability for a third order linear equation</atitle><jtitle>Portugaliae mathematica</jtitle><addtitle>Port. Math</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>68</volume><issue>3</issue><spage>279</spage><epage>296</epage><pages>279-296</pages><issn>0032-5155</issn><eissn>1662-2758</eissn><abstract>We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$ and $\alpha$, $\beta$ and $\gamma$ are real constants. Using multiplier techniques, HUM method and a special uniform continuation theorem, we prove the exponential decay of the total energy and the boundary exact controllability associated with the above equation. Moreover, we characterize a set of lengths $L$, named $\mathcal{X}$, in which it is possible to find non null solutions for the above equation with constant (in time) energy and we show it depends strongly on the parameters $\alpha$, $\beta$ and $\gamma$.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/PM/1892</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5155 |
ispartof | Portugaliae mathematica, 2011-01, Vol.68 (3), p.279-296 |
issn | 0032-5155 1662-2758 |
language | eng |
recordid | cdi_crossref_primary_10_4171_pm_1892 |
source | European Mathematical Society Publishing House |
subjects | Partial differential equations |
title | On the stabilization and controllability for a third order linear equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stabilization%20and%20controllability%20for%20a%20third%20order%20linear%20equation&rft.jtitle=Portugaliae%20mathematica&rft.au=da%20Silva,%20Patr%C3%ADcia%20Nunes&rft.date=2011-01-01&rft.volume=68&rft.issue=3&rft.spage=279&rft.epage=296&rft.pages=279-296&rft.issn=0032-5155&rft.eissn=1662-2758&rft_id=info:doi/10.4171/PM/1892&rft_dat=%3Cems_cross%3E10_4171_PM_1892%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |