On the stabilization and controllability for a third order linear equation
We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$...
Gespeichert in:
Veröffentlicht in: | Portugaliae mathematica 2011-01, Vol.68 (3), p.279-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the stabilization and the exact controllability of a third order linear equation in a bounded interval. That is, we consider the following equation: $$ iu_t+i\gamma u_x+ \alpha u_{xx} + i\beta u_{xxx} =0, $$ where $u=u(x,t)$ is a complex valued function defined in $(0,L)\times(0,+\infty)$ and $\alpha$, $\beta$ and $\gamma$ are real constants. Using multiplier techniques, HUM method and a special uniform continuation theorem, we prove the exponential decay of the total energy and the boundary exact controllability associated with the above equation. Moreover, we characterize a set of lengths $L$, named $\mathcal{X}$, in which it is possible to find non null solutions for the above equation with constant (in time) energy and we show it depends strongly on the parameters $\alpha$, $\beta$ and $\gamma$. |
---|---|
ISSN: | 0032-5155 1662-2758 |
DOI: | 10.4171/PM/1892 |