Sharp local minimax rates for goodness-of-fit testing in multivariate binomial and Poisson families and in multinomials

We consider the identity testing problem – or goodness-of-fit testing problem – in multivariate binomial families, multivariate Poisson families and multinomial distributions. Given a known distribution p and n i.i.d. samples drawn from an unknown distribution q , we investigate how large \rho>0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical statistics and learning (Online) 2022-10, Vol.5 (1), p.1-54
Hauptverfasser: Chhor, Julien, Carpentier, Alexandra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the identity testing problem – or goodness-of-fit testing problem – in multivariate binomial families, multivariate Poisson families and multinomial distributions. Given a known distribution p and n i.i.d. samples drawn from an unknown distribution q , we investigate how large \rho>0 should be to distinguish, with high probability, the case p=q from the case d(p,q) \geq \rho , where d denotes a specific distance over probability distributions. We answer this question in the case of a family of different distances: d(p,q) = \|p-q\|_t for t \in [1,2] , where \|\cdot\|_t is the entrywise \ell_t norm. Besides being locally minimax-optimal – i.e. characterizing the detection threshold in dependence of the known matrix p – our tests have simple expressions and are easily implementable.
ISSN:2520-2316
2520-2324
DOI:10.4171/msl/32