Counting eigenvalues of Schrödinger operators using the landscape function
We prove an upper and a lower bound on the rank of the spectral projections of the Schrödinger operator -\Delta + V in terms of the volume of the sublevel sets of an effective potential \frac{1}{u} . Here, u is the ‘landscape function’ of G. David, M. Filoche, and S. Mayboroda [Adv. Math. 390 (2021)...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2023-01, Vol.13 (4), p.1445-1472 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an upper and a lower bound on the rank of the spectral projections of the Schrödinger operator -\Delta + V in terms of the volume of the sublevel sets of an effective potential \frac{1}{u} . Here, u is the ‘landscape function’ of G. David, M. Filoche, and S. Mayboroda [Adv. Math. 390 (2021), article no. 107946], namely a solution of (-\Delta + V)u = 1 in \mathbb R^{d} . We prove the result for non-negative potentials satisfying a Kato-type and a doubling condition, in all spatial dimensions, in infinite volume, and show that no coarse-graining is required. Our result yields in particular a necessary and sufficient condition for discreteness of the spectrum. In the case of nonnegative polynomial potentials, we prove that the spectrum is discrete if and only if no directional derivative vanishes identically. |
---|---|
ISSN: | 1664-039X 1664-0403 |
DOI: | 10.4171/jst/488 |