Spectral flow for skew-adjoint Fredholm operators

An analytic definition of a $\mathbb Z_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through 0 along the path. The $\mathbb Z_2$-valued spectral flow i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2019-01, Vol.9 (1), p.137-170
Hauptverfasser: Carey, Alan, Phillips, John, Schulz-Baldes, Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytic definition of a $\mathbb Z_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through 0 along the path. The $\mathbb Z_2$-valued spectral flow is shown to satisfy a concatenation property and homotopy invariance, and it provides an isomorphism on the fundamental group of the real skew-adjoint Fredholm operators. Moreover, it is connected to a $\mathbb Z_2$-index pairing for suitable paths. Applications concern the zero energy bound states at defects in a Majorana chain and a spectral flow interpretation for the $\mathbb Z_2$-polarization in these models.
ISSN:1664-039X
1664-0403
DOI:10.4171/JST/243