Spectral flow for skew-adjoint Fredholm operators
An analytic definition of a $\mathbb Z_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through 0 along the path. The $\mathbb Z_2$-valued spectral flow i...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2019-01, Vol.9 (1), p.137-170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An analytic definition of a $\mathbb Z_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through 0 along the path. The $\mathbb Z_2$-valued spectral flow is shown to satisfy a concatenation property and homotopy invariance, and it provides an isomorphism on the fundamental group of the real skew-adjoint Fredholm operators. Moreover, it is connected to a $\mathbb Z_2$-index pairing for suitable paths. Applications concern the zero energy bound states at defects in a Majorana chain and a spectral flow interpretation for the $\mathbb Z_2$-polarization in these models. |
---|---|
ISSN: | 1664-039X 1664-0403 |
DOI: | 10.4171/JST/243 |