On the lifting property for $C^$-algebras
We characterize the lifting property (LP) of a separable C^* -algebra A by a property of its maximal tensor product with other C^* -algebras, namely we prove that A has the LP if and only if for any family \{D_i\mid i\in I\} of C^* -algebras the canonical map {\ell_\infty(\{D_i\}) \otimes_{\max} A}\...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2022-01, Vol.16 (3), p.967-1006 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the lifting property (LP) of a separable C^* -algebra A by a property of its maximal tensor product with other C^* -algebras, namely we prove that A has the LP if and only if for any family \{D_i\mid i\in I\} of C^* -algebras the canonical map {\ell_\infty(\{D_i\}) \otimes_{\max} A}\to {\ell_\infty(\{D_i \otimes_{\max} A\}) } is isometric. Equivalently, this holds if and only if M \otimes_{\max} A= M \otimes_\mathrm{nor} A for any von Neumann algebra M . |
---|---|
ISSN: | 1661-6952 1661-6960 |
DOI: | 10.4171/jncg/473 |