Homotopy Rota–Baxter operators and post-Lie algebras

Rota–Baxter operators and the more general \mathcal{O} -operators, together with their interconnected pre-Lie and post-Lie algebras, are important algebraic structures, with Rota–Baxter operators and pre-Lie algebras instrumental in the Connes–Kreimer approach to renormalization of quantum field the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of noncommutative geometry 2023-02, Vol.17 (1), p.1-35
Hauptverfasser: Tang, Rong, Bai, Chengming, Guo, Li, Sheng, Yunhe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rota–Baxter operators and the more general \mathcal{O} -operators, together with their interconnected pre-Lie and post-Lie algebras, are important algebraic structures, with Rota–Baxter operators and pre-Lie algebras instrumental in the Connes–Kreimer approach to renormalization of quantum field theory. This paper introduces the notions of a homotopy Rota–Baxter operator and a homotopy \mathcal{O} -operator on a symmetric graded Lie algebra. Their characterization by Maurer–Cartan elements of suitable differential graded Lie algebras is provided. Through the action of a homotopy \mathcal{O} -operator on a symmetric graded Lie algebra, we arrive at the notion of an operator homotopy post-Lie algebra, together with its characterization in terms of Maurer–Cartan elements. A cohomology theory of post-Lie algebras is established, with an application to 2-term skeletal operator homotopy post-Lie algebras.
ISSN:1661-6952
1661-6960
DOI:10.4171/jncg/466