Dimensions of equilibrium measures on a class of planar self-affine sets

We study equilibrium measures (Käenmäki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such measures are exact dimensional and the dimension sat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fractal geometry 2020-01, Vol.7 (1), p.87-111
Hauptverfasser: Fraser, Jonathan, Jordan, Thomas, Jurga, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study equilibrium measures (Käenmäki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such measures are exact dimensional and the dimension satisfies the Ledrappier–Young formula, which gives an explicit expression for the dimension in terms of the entropy and Lyapunov exponents as well as the dimension of a coordinate projection of the measure. In particular, we do this by showing that the Käenmäki measure is equal to the sum of (the pushforwards) of two Gibbs measures on an associated subshift of finite type.
ISSN:2308-1309
2308-1317
DOI:10.4171/JFG/85