On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups

We show that F. Dekking’s recurrent sets in \mathbb{R}^2 , which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fractal geometry 2022-08, Vol.9 (1), p.171-192
Hauptverfasser: Ishii, Yutaka, Oka, Tatsuya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that F. Dekking’s recurrent sets in \mathbb{R}^2 , which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus.We also present a non-conformal example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one.
ISSN:2308-1309
2308-1317
DOI:10.4171/jfg/120