On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups
We show that F. Dekking’s recurrent sets in \mathbb{R}^2 , which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions...
Gespeichert in:
Veröffentlicht in: | Journal of fractal geometry 2022-08, Vol.9 (1), p.171-192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that F. Dekking’s recurrent sets in \mathbb{R}^2 , which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus.We also present a non-conformal example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one. |
---|---|
ISSN: | 2308-1309 2308-1317 |
DOI: | 10.4171/jfg/120 |