Hamiltonicity of cubic Cayley graphs

Following a problem posed by Lov\'asz in 1969, it is believed that every finite connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from finite groups having a $(2,s,3)$-presentation, that is, for groups $G=\la a,b\mid a^2=1, b^s=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2007-01, Vol.9 (4), p.775-787
Hauptverfasser: Glover, Henry, Marusic, Dragan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following a problem posed by Lov\'asz in 1969, it is believed that every finite connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from finite groups having a $(2,s,3)$-presentation, that is, for groups $G=\la a,b\mid a^2=1, b^s=1, (ab)^3=1, \dots \ra$ generated by an involution $a$ and an element $b$ of order $s\geq3$ such that their product $ab$ has order $3$. More precisely, it is shown that the Cayley graph $X=Cay(G,\{a,b,b^{-1}\})$ has a Hamilton cycle when $|G|$ (and thus $s$) is congruent to $2$ modulo $4$, and has a long cycle missing only two adjacent vertices (and thus necessarily a Hamilton path) when $|G|$ is congruent to $0$ modulo $4$.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/96