Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems
In this paper we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $\mathbb R^{n+1}$ with speed $f r^{\alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin, and $f$ is a positive and smooth function. If $\alpha \ge n+1$, w...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2020-01, Vol.22 (3), p.893-923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $\mathbb R^{n+1}$ with speed $f r^{\alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin, and $f$ is a positive and smooth function. If $\alpha \ge n+1$, we prove that the flow exists for all time and converges smoothly after normalisation to a soliton, which is a sphere if $f \equiv 1$. Our argument provides a new proof in the smooth category for the classical Aleksandrov problem, and resolves the dual $q$-Minkowski problem introduced by Huang, Lutwak, Yang and Zhang [30] for $q < 0$. If $\alpha < n+1$, corresponding to the case $q > 0$, we also establish the same results for even function $f$ and origin-symmetric initial condition, but for non-symmetric $f$, counterexample is given for the above smooth convergence. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/936 |