Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems

In this paper we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $\mathbb R^{n+1}$ with speed $f r^{\alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin, and $f$ is a positive and smooth function. If $\alpha \ge n+1$, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2020-01, Vol.22 (3), p.893-923
Hauptverfasser: Li, Qi-Rui, Sheng, Weimin, Wang, Xu-Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study a contracting flow of closed, convex hypersurfaces in the Euclidean space $\mathbb R^{n+1}$ with speed $f r^{\alpha} K$, where $K$ is the Gauss curvature, $r$ is the distance from the hypersurface to the origin, and $f$ is a positive and smooth function. If $\alpha \ge n+1$, we prove that the flow exists for all time and converges smoothly after normalisation to a soliton, which is a sphere if $f \equiv 1$. Our argument provides a new proof in the smooth category for the classical Aleksandrov problem, and resolves the dual $q$-Minkowski problem introduced by Huang, Lutwak, Yang and Zhang [30] for $q < 0$. If $\alpha < n+1$, corresponding to the case $q > 0$, we also establish the same results for even function $f$ and origin-symmetric initial condition, but for non-symmetric $f$, counterexample is given for the above smooth convergence.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/936