Periods of modular forms on $\Gamma_0(N)$ and products of Jacobi theta functions

Generalizing a result of [15] for modular forms of level one, we give a closed formula for the sum of all Hecke eigenforms on $\Gamma_0(N)$, multiplied by their odd period polynomials in two variables, as a single product of Jacobi theta series for any squarefree level $N$ . We also show that for $N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2019-02, Vol.21 (5), p.1379-1410
Hauptverfasser: Choie, YoungJu, Park, Yoon Kyung, Zagier, Don
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalizing a result of [15] for modular forms of level one, we give a closed formula for the sum of all Hecke eigenforms on $\Gamma_0(N)$, multiplied by their odd period polynomials in two variables, as a single product of Jacobi theta series for any squarefree level $N$ . We also show that for $N = 2, 3$ and $5$ this formula completely determines the Fourier expansions all Hecke eigenforms of all weights on $\Gamma_0(N)$.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/864