A sharply 2-transitive group without a non-trivial abelian normal subgroup
We show that any group $G$ is contained in some sharply 2-transitive group $\mathcal G$ without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups $\mathcal G$ that we construct have no fixed points.
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2017-01, Vol.19 (10), p.2895-2910 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that any group $G$ is contained in some sharply 2-transitive group $\mathcal G$ without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups $\mathcal G$ that we construct have no fixed points. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/730 |