A sharply 2-transitive group without a non-trivial abelian normal subgroup

We show that any group $G$ is contained in some sharply 2-transitive group $\mathcal G$ without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups $\mathcal G$ that we construct have no fixed points.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2017-01, Vol.19 (10), p.2895-2910
Hauptverfasser: Rips, Eliyahu, Segev, Yoav, Tent, Katrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that any group $G$ is contained in some sharply 2-transitive group $\mathcal G$ without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups $\mathcal G$ that we construct have no fixed points.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/730