Upper bounds for singular perturbation problems involving gradient fields
We prove an upper bound for the Aviles-Giga problem, which involves the minimization of the energy $E_\e(v)=\e\int_\Omega\big|\nabla^2v\big|^2dx+\frac{1}{\e}\int_\Omega\big(1-|\nabla v|^2\big)^2dx$ over $v\in H^2(\Omega)$, where $\e>0$ is a small parameter. Given $v\in W^{1,\infty}(\Omega)$ such...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2007-01, Vol.9 (1), p.1-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an upper bound for the Aviles-Giga problem, which involves the minimization of the energy $E_\e(v)=\e\int_\Omega\big|\nabla^2v\big|^2dx+\frac{1}{\e}\int_\Omega\big(1-|\nabla v|^2\big)^2dx$ over $v\in H^2(\Omega)$, where $\e>0$ is a small parameter. Given $v\in W^{1,\infty}(\Omega)$ such that $\nabla v\in BV$ and $|\nabla v| =1$ a.e., we construct a family $\{v_\e\}$ satisfying: $v_\e\to v$ in $W^{1,p}(\Omega)$ and $E_\e(v_\e)\to\frac{1}{3}\int_{J_{\nabla v}}|\nabla^+v-\nabla^-v|^3\,d{\mathcal H}^{N-1}$, as $\e$ goes to $0$. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/70 |