Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers

Let $A$ be a dg algebra over $\mathbb F_2$ and let $M$ be a dg $A$-bimodule. We show that under certain technical hypotheses on $A$, a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product $M \otimes_A^L M$ and converges to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2016-01, Vol.18 (2), p.281-325
Hauptverfasser: Lipshitz, Robert, Treumann, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A$ be a dg algebra over $\mathbb F_2$ and let $M$ be a dg $A$-bimodule. We show that under certain technical hypotheses on $A$, a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product $M \otimes_A^L M$ and converges to the Hochschild homology of $M$. We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/590