Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers
Let $A$ be a dg algebra over $\mathbb F_2$ and let $M$ be a dg $A$-bimodule. We show that under certain technical hypotheses on $A$, a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product $M \otimes_A^L M$ and converges to th...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2016-01, Vol.18 (2), p.281-325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $A$ be a dg algebra over $\mathbb F_2$ and let $M$ be a dg $A$-bimodule. We show that under certain technical hypotheses on $A$, a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product $M \otimes_A^L M$ and converges to the Hochschild homology of $M$. We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/590 |