Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n

The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2015-04, Vol.17 (4), p.991-1007
Hauptverfasser: Jiang, Dihua, Nien, Chufeng, Stevens, Shaun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 4
container_start_page 991
container_title Journal of the European Mathematical Society : JEMS
container_volume 17
creator Jiang, Dihua
Nien, Chufeng
Stevens, Shaun
description The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through all irreducible supercuspidal representations of $\mathrm {GL}_r(F)$ and $r$ runs through positive integers. The Jacquet conjecture asserts that it is enough to take $r=1,2,\ldots,\left[\frac{n}{2}\right]$. Based on arguments in the work of Henniart and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general approach to prove the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under an assumption which is then verified in several cases, including the case of level zero representations.
doi_str_mv 10.4171/JEMS/524
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1624-7ac8c5c5ad674ea1ce756cb3b461a29b1e6703e4dc870f673f0cf73d55b76c0a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbBn7CHHLzE7na_2qOUWi0RBetBEMJmMqENTbbuphUR_7tJKz3NMPPw8vIQcs3ZreSGD-bTp9eBGsoT0uNSqHg80uL0uCt1Ti5CKBnjRknRI-8L92V9HmizRDq38LnFhoKrS4Rm65G6ev9JHNg1nbh6hz4gffEuW2NFC-dptIlim6-ARh-VbZa-oj-z5DetL8lZYdcBr_5nn7zdTxeThzh5nj1O7pIYuB7K2FgYgQJlc20kWg5olIZMZFJzOxxnHLVhAmUOI8MKbUTBoDAiVyozGpgVfXJzyAXvQvBYpBu_qqz_TjlLOyVpiVVIWyUtGh3Q7lC6ra_bYkesM7fH_gAMvF-T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n</title><source>European Mathematical Society Publishing House</source><creator>Jiang, Dihua ; Nien, Chufeng ; Stevens, Shaun</creator><creatorcontrib>Jiang, Dihua ; Nien, Chufeng ; Stevens, Shaun</creatorcontrib><description>The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through all irreducible supercuspidal representations of $\mathrm {GL}_r(F)$ and $r$ runs through positive integers. The Jacquet conjecture asserts that it is enough to take $r=1,2,\ldots,\left[\frac{n}{2}\right]$. Based on arguments in the work of Henniart and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general approach to prove the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under an assumption which is then verified in several cases, including the case of level zero representations.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/524</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Number theory ; Topological groups, Lie groups</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2015-04, Vol.17 (4), p.991-1007</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Jiang, Dihua</creatorcontrib><creatorcontrib>Nien, Chufeng</creatorcontrib><creatorcontrib>Stevens, Shaun</creatorcontrib><title>Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through all irreducible supercuspidal representations of $\mathrm {GL}_r(F)$ and $r$ runs through positive integers. The Jacquet conjecture asserts that it is enough to take $r=1,2,\ldots,\left[\frac{n}{2}\right]$. Based on arguments in the work of Henniart and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general approach to prove the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under an assumption which is then verified in several cases, including the case of level zero representations.</description><subject>Number theory</subject><subject>Topological groups, Lie groups</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbBn7CHHLzE7na_2qOUWi0RBetBEMJmMqENTbbuphUR_7tJKz3NMPPw8vIQcs3ZreSGD-bTp9eBGsoT0uNSqHg80uL0uCt1Ti5CKBnjRknRI-8L92V9HmizRDq38LnFhoKrS4Rm65G6ev9JHNg1nbh6hz4gffEuW2NFC-dptIlim6-ARh-VbZa-oj-z5DetL8lZYdcBr_5nn7zdTxeThzh5nj1O7pIYuB7K2FgYgQJlc20kWg5olIZMZFJzOxxnHLVhAmUOI8MKbUTBoDAiVyozGpgVfXJzyAXvQvBYpBu_qqz_TjlLOyVpiVVIWyUtGh3Q7lC6ra_bYkesM7fH_gAMvF-T</recordid><startdate>20150409</startdate><enddate>20150409</enddate><creator>Jiang, Dihua</creator><creator>Nien, Chufeng</creator><creator>Stevens, Shaun</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150409</creationdate><title>Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n</title><author>Jiang, Dihua ; Nien, Chufeng ; Stevens, Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1624-7ac8c5c5ad674ea1ce756cb3b461a29b1e6703e4dc870f673f0cf73d55b76c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Number theory</topic><topic>Topological groups, Lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Dihua</creatorcontrib><creatorcontrib>Nien, Chufeng</creatorcontrib><creatorcontrib>Stevens, Shaun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Dihua</au><au>Nien, Chufeng</au><au>Stevens, Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2015-04-09</date><risdate>2015</risdate><volume>17</volume><issue>4</issue><spage>991</spage><epage>1007</epage><pages>991-1007</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>The Local Converse Problem is to determine how the family of the local gamma factors $\gamma(s,\pi\times\tau,\psi)$ characterizes the isomorphism class of an irreducible admissible generic representation $\pi$ of $\mathrm {GL}_n(F)$, with $F$ a non-archimedean local field, where $\tau$ runs through all irreducible supercuspidal representations of $\mathrm {GL}_r(F)$ and $r$ runs through positive integers. The Jacquet conjecture asserts that it is enough to take $r=1,2,\ldots,\left[\frac{n}{2}\right]$. Based on arguments in the work of Henniart and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general approach to prove the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under an assumption which is then verified in several cases, including the case of level zero representations.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/524</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2015-04, Vol.17 (4), p.991-1007
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_524
source European Mathematical Society Publishing House
subjects Number theory
Topological groups, Lie groups
title Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20Jacquet%20conjecture%20on%20the%20Local%20Converse%20Problem%20for%20$p$-adic%20$%5Cmathrm%20%7BGL%7D_n&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Jiang,%20Dihua&rft.date=2015-04-09&rft.volume=17&rft.issue=4&rft.spage=991&rft.epage=1007&rft.pages=991-1007&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/524&rft_dat=%3Cems_cross%3E10_4171_JEMS_524%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true